Air Quality node sample
The air quality node consists of a monitoring node with (relatively) cheap gas and particulate sensors that reports at regular intervals.
The firmware and hardware with is available on GitHub at https://github.com/lab5e/air-quality-sensor-node.
Data is transmitted via NB-IoT to the Span service, then to the backend service which decodes and stores it in a local store. The decoded data is served via gRPC and a REST API to clients.
The server portion of the system is at https://github.com/lab5e/aqserver
Scientific papers
There’s been quite a number of scientific papers, bachelors- and masters degrees that have used data from this system. Most notable are:
Lepperød A., Nguyen H.T., Akselsen S., Wienhofen L., Øzturk P., Zhang W. (2020) Air Quality Monitor and Forecast in Norway Using NB-IoT and Machine Learning. In: Santos H., Pereira G., Budde M., Lopes S., Nikolic P. (eds) Science and Technologies for Smart Cities. SmartCity 360 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-030-51005-3_7
Sigmund Akselsen, Pontus Edvard Aurdal, Kerstin Bach, João Paulo Costeira, Ilias Kalamaras, Andreas Jacobsen Lepperød, Pedro Lima, Ieva Martinkenaite, Ole Jakob Mengshoel, Arne Munch-Ellingsen, Hai Thanh Nguyen, Dimitrios Tzovaras, Tiago Veiga, Konstantinos Votis, Leendert Wienhofen, Weiqing Zhang, Pinar Øzturk. On the need for explanations, visualisations and measurements in data-driven air quality monitoring and forecasting. Paper presented at the 1st International Workshop on Evaluation and Benchmarking of Human-Centered AI Systems (EBHAIS-2019), Milton Keynes, UK, Sep 20, 2019. https://folk.idi.ntnu.no/kerstinb/paper/2019-EBHAIS-AkselsenEtAl.pdf
Ilias Kalamaras, Ioannis Xygonakis, Konstantinos Glykos, Sigmund Akselsen, Arne Munch-Ellingsen, Hai Thanh Nguyen, Andreas Jacobsen Lepperød, Kerstin Bach, Konstantinos Votis, Dimitrios Tzovaras. 2019. Visual analytics for exploring air quality data in an AI-enhanced IoT environment. Paper presented at the 11th International ACM Conference on Management of Digital EcoSystems (MEDES'19), Limassol, Cyprus, Nov, 12-14, 2019. https://folk.idi.ntnu.no/kerstinb/paper/2019-KalamaresEtAl.pdf
Tiago Veiga, Arne Munch-Ellingsen, Christoforos Papastergioupolos, Dimitrios Tzovaras, Ilias Kalamaras, Kerstin Bach, Konstantinos Votis and Sigmund Akselsen. 2021. From a Low-Cost Air Quality Sensor Network to Decision Support Services: Steps towards Data Calibration and Service Development. Sensors 2021, 21(9), 3190; https://www.mdpi.com/1424-8220/21/9/3190